翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Gross-Zagier theorem : ウィキペディア英語版
Heegner point
In mathematics, a Heegner point is a point on a modular curve that is the image of a quadratic imaginary point of the upper half-plane. They were defined by Bryan Birch and named after Kurt Heegner, who used similar ideas to prove Gauss's conjecture on imaginary quadratic fields of class number one.
The Gross–Zagier theorem describes the height of Heegner points in terms of a derivative of the L-function of the elliptic curve at the point ''s'' = 1. In particular if the elliptic curve has (analytic) rank 1, then the Heegner points can be used to construct a rational point on the curve of infinite order (so the Mordell–Weil group has rank at least 1). More generally, showed that Heegner points could be used to construct rational points on the curve for each positive integer ''n'', and the heights of these points were the coefficients of a modular form of weight 3/2.
Kolyvagin later used Heegner points to construct Euler systems, and used this to prove much of the Birch–Swinnerton-Dyer conjecture for rank 1 elliptic curves. Shouwu Zhang generalized the Gross–Zagier theorem from elliptic curves to the case of modular abelian varieties. Brown proved the Birch–Swinnerton-Dyer conjecture for most rank 1 elliptic curves over global fields of positive characteristic.
Heegner points can be used to compute very large rational points on rank 1 elliptic curves (see for a survey) that could not be found by naive methods. Implementation of the algorithm is available in Magma and PARI/GP
==References==

*.
*.
*
*.
*.
*.
*.
*.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Heegner point」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.